skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barth, Matthew J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many cities across the world are looking to use technology and innovation to improve the overall efficiency and safety for their residents. At the heart of these smart-city plans, a variety of intelligent transportation system technologies can be used to improve safety, enhance mobility measures (e.g., traffic flow), and minimize environmental impacts of a city’s mobility ecosystem. Early implementations of these ITS technologies often take place in affluent cities, where there are many funding opportunities and suitable areas for deployment. However, it is critical that we also develop smart city solutions that are focused on improving conditions of disadvantaged and environmental justice communities, whose residents have suffered the most from unmitigated urban sprawl and its environmental and health impacts. As a leading example, Inland Southern California has grown to be one of the largest hubs of goods movement in the world. Numerous logistics facilities such as warehouses, rail facilities, and truck depots have rapidly spread throughout these communities, with the local residents bearing a disproportionate burden of truck traffic, poor air quality, and adverse health effects. Further, the majority of residents have lower-wage jobs and very few mobility options, other than low-end personal car ownership. To improve this situation, UC Riverside researchers have focused their smart city research on these impacted communities, finding innovative solutions to eco-friendly traffic management, developing better-shared (electric) mobility solutions for the community, improving freight movements, and enhancing the transition to vehicle electrification. Numerous research and development projects are currently underway in Inland Southern California, spanning advanced smart city modeling and impact analysis, community outreach events, and real-world technology demonstrations. This chapter describes several of these ITS solutions and their potential for improving many cities around the world. 
    more » « less
    Free, publicly-accessible full text available December 22, 2025
  2. Connected and automated trucks (CATs) have the potential to transform the transportation system and logistics industry. Their unique features, such as operational strategies and truck driving behaviors, can affect transportation system performance. For successful development, testing and deployment of CATs, analysis, modeling, and simulation (AMS) plays an important role, especially in evaluating the impacts of CAT technologies on existing transportation systems. This paper presents a comprehensive review and assessment of up-to-date studies related to CAT AMS, focusing on three correlated elements: CAT applications, data, and tools. The research delves into CAT applications from individual CAT and CAT fleet to CAT-involved traffic. It explores available data sources relevant to CAT system use cases, assessing their potential issues and opportunities. The study also reviews existing AMS tools used to analyze CAT applications at both operational performance and network integration levels, emphasizing research needs in CAT-specific tools development. The findings identify the data needs and point out that existing AMS tools may not capture the complexity of CAT operation, which involves driving behaviors, vehicle-to-everything communications, autonomous capabilities, and response to truck-specific scenarios. The study will lay a solid foundation for further development of the AMS framework for CATs and provide guidance to future research of CAT applications. 
    more » « less
    Free, publicly-accessible full text available February 27, 2026
  3. Driver State Monitoring (DSM) is paramount for improving driving safety for both drivers of ego-vehicles and their surrounding road users, increasing public trust, and supporting the transition to autonomous driving. This paper introduces a Transformer-based classifier for DSM using an in-vehicle camera capturing raw Bayer images. Compared to traditional RGB images, we opt for the original Bayer data, further employing a Transformer-based classification algorithm. Experimental results prove that the accuracy of the Bayer Color-filled type images is only 0.61% lower than that of RGB images. Additionally, the performance of Bayer data is closely comparable to RGB images for DSM purposes. However, utilizing Bayer data can offer potential advantages, including reduced camera costs, lower energy consumption, and shortened Image Signal Processing (ISP) time. These benefits will enhance the efficacy of DSM systems and promote their widespread adoption. 
    more » « less
    Free, publicly-accessible full text available December 11, 2025
  4. : In the challenging realm of object detection under rainy conditions, visual distortions significantly hinder accuracy. This paper introduces Rain-Adapt Faster RCNN (RAF-RCNN), an innovative end-to-end approach that merges advanced deraining techniques with robust object detection. Our method integrates rain removal and object detection into a single process, using a novel feature transfer learning approach for enhanced robustness. By employing the Extended Area Structural Discrepancy Loss (EASDL), RAF-RCNN enhances feature map evaluation, leading to significant performance improvements. In quantitative testing of the Rainy KITTI dataset, RAF-RCNN achieves a mean Average Precision (mAP) of 51.4% at IOU [0.5, 0.95], exceeding previous methods by at least 5.5%. These results demonstrate RAF-RCNN's potential to significantly enhance perception systems in intelligent transportation, promising substantial improvements in reliability and safety for autonomous vehicles operating in varied weather conditions. 
    more » « less
  5. Perceiving the environment is one of the most fundamental keys to enabling Cooperative Driving Automation, which is regarded as the revolutionary solution to addressing the safety, mobility, and sustainability issues of contemporary transportation systems. Although an unprecedented evolution is now happening in the area of computer vision for object perception, state-of-the-art perception methods are still struggling with sophisticated real-world traffic environments due to the inevitable physical occlusion and limited receptive field of single-vehicle systems. Based on multiple spatially separated perception nodes, Cooperative Perception (CP) is born to unlock the bottleneck of perception for driving automation. In this paper, we comprehensively review and analyze the research progress on CP, and we propose a unified CP framework. The architectures and taxonomy of CP systems based on different types of sensors are reviewed to show a high-level description of the workflow and different structures for CP systems. The node structure, sensing modality, and fusion schemes are reviewed and analyzed with detailed explanations for CP. A Hierarchical Cooperative Perception (HCP) framework is proposed, followed by a review of existing open-source tools that support CP development. The discussion highlights the current opportunities, open challenges, and anticipated future trends. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  6. A significant challenge in the field of object detection lies in the system's performance under non-ideal imaging conditions, such as rain, fog, low illumination, or raw Bayer images that lack ISP processing. Our study introduces "Feature Corrective Transfer Learning", a novel approach that leverages transfer learning and a bespoke loss function to facilitate the end-to-end detection of objects in these challenging scenarios without the need to convert non-ideal images into their RGB counterparts. In our methodology, we initially train a comprehensive model on a pristine RGB image dataset. Subsequently, non-ideal images are processed by comparing their feature maps against those from the initial ideal RGB model. This comparison employs the Extended Area Novel Structural Discrepancy Loss (EANSDL), a novel loss function designed to quantify similarities and integrate them into the detection loss. This approach refines the model's ability to perform object detection across varying conditions through direct feature map correction, encapsulating the essence of Feature Corrective Transfer Learning. Experimental validation on variants of the KITTI dataset demonstrates a significant improvement in mean Average Precision (mAP), resulting in a 3.8-8.1% relative enhancement in detection under non-ideal conditions compared to the baseline model, and a less marginal performance difference within 1.3% of the mAP@[0.5:0.95] achieved under ideal conditions by the standard Faster RCNN algorithm. 
    more » « less
  7. Reliable prediction of vehicle trajectories at signalized intersections is crucial to urban traffic management and autonomous driving systems. However, it presents unique challenges, due to the complex roadway layout at intersections, involvement of traffic signal controls, and interactions among different types of road users. To address these issues, we present in this paper a novel model called Knowledge-Informed Generative Adversarial Network (KI-GAN), which integrates both traffic signal information and multi-vehicle interactions to predict vehicle trajectories accurately. Additionally, we propose a specialized attention pooling method that accounts for vehicle orientation and proximity at intersections. Based on the SinD dataset, our KI-GAN model is able to achieve an Average Displacement Error (ADE) of 0.05 and a Final Displacement Error (FDE) of 0.12 for a 6-second observation and 6-second prediction cycle. When the prediction window is extended to 9 seconds, the ADE and FDE values are further reduced to 0.11 and 0.26, respectively. These results demonstrate the effectiveness of the proposed KI-GAN model in vehicle trajectory prediction under complex scenarios at signalized intersections, which represents a significant advancement in the target field. 
    more » « less
  8. California has set a goal for all drayage trucks operating in the state to be zero-emitting by 2035. In order to achieve this goal, drayage operators would need to transition 100% of their Heets to zero-emission vehicles such as battery electric trucks (BETs). This article presents an intelligently controlled charging model for BETs that minimizes charging costs while optimizing subsequent tour completion. To develop this model, real-world activity data from a drayage truck Heet operating in Southern California was combined with a two-stage clustering technique to identify trip and tour patterns. The energy consumption for each trip and tour was then simulated for BETs with a battery capacity of 565 kWh using a 150 kW charging power level. Home base charging load profiles were generated using the proposed charging model, subject to constraints of the energy needed to complete the next subsequent tour and Time-of-Use energy cost rates. A sensitivity analysis evaluated three scenarios: a passive scenario with a 5% state-of-charge (SOC) constraint after completing the subsequent tour, an average scenario with a 50% SOC constraint, and an aggressive scenario with an 80% SOC constraint. Results indicated that the 80% SOC constraint scenario achieved the lowest charging cost. However, it also yielded the lowest tour completion rate (51%). In contrast, the 5% SOC constraint scenario registered the highest tour completion rate. These results revealed that 96% of the tours could be successfully completed using the intelligently controlled charging model. The remaining tours were infeasible, indicating that the available time at the home base was inadequate for charging the necessary energy for the next tour. In terms of total costs, the scenario with a 5% SOC constraint resulted in an annual cost of approximately $40,000, whereas the 80% SOC scenario nearly doubled that amount. 
    more » « less
  9. In this paper, we examine the problem of the Dilemma Zone (DZ) in depth, weaving together the various influences that span the environment, the ego-vehicle, and ultimately the characteristics of the driver. Driver behavior in dilemma zone situations is crucial, and more research is urgently needed in this area. The journey through various modeling approaches and data acquisition techniques sheds new light on driver behavior within the dilemma zone context. Our thorough examination of the current research landscape has revealed that several significant areas remain overlooked. As well as the dynamic impact of vehicles, vehicle interactions, and a strong tendency to over-rely on infrastructure information, there are also concerns about the lack of comprehensive evaluation tools. However, we do not see these gaps as stumbling blocks, but rather as steppingstones for future research opportunities. A more focused study of cooperative solutions is required considering the potential of personalized modeling, the untapped power of machine learning techniques, and the importance of personalized modeling. It is our hope that by embracing innovative approaches that can capture and simulate personalized behavioral data using “everything-in-the-loop” simulations, future research endeavors will be guided. To effectively mitigate the DZ problem, we also point out the research gaps and opportunities for further research in the DZ. 
    more » « less